metallurgydata متالورژی دیتا

متالورژی،نانو،ریخته گری،مدلسازی،جوشکاری،فرج،متالوگرافی،بیومتریال،ایمنی صنعتی،استخراج،عملیات حرارتی،فلزات،مهندسی مواد،خوردگی،دیرگداز

metallurgydata متالورژی دیتا

متالورژی،نانو،ریخته گری،مدلسازی،جوشکاری،فرج،متالوگرافی،بیومتریال،ایمنی صنعتی،استخراج،عملیات حرارتی،فلزات،مهندسی مواد،خوردگی،دیرگداز

metallurgydata       متالورژی دیتا

به لطف خدا،metallurgydata کاملترین و پر بازدیدترین(آمار حقیقی و قابل باز دید)مرجع اطلاعات مواد و متالورژی با بیش از 1200 عنوان ،شامل هزاران متن،کتاب،تصویر،فیلم تخصصی در خدمت شما می باشد.پاسخ به سئوالات و مشاوره رایگان با تجربه20 سال تحقیق و مطالعه در شاخه های مختلف متالورژی.
http://kiau.ac.ir/~majidghafouri
09356139741:tel
ghfori@gmail.com
با عرض تقدیر و تشکر از توجه و راهنمایی کلیه علاقمندان
با ctrl+f موضوعات خود را در متالورژی دیتا پیدا کنید

پیامرسان تلگرام: metallurgydata@

بارکد شناسایی آدرس متالورژی
بایگانی

 http://s8.picofile.com/file/8310551084/%D8%B1%D8%A7%DB%8C%D8%A7%D9%86%D9%87_%DA%A9%D9%88%D8%A7%D9%86%D8%AA%D9%88%D9%85%DB%8C.jpg

محققان موفق به تولید ماده‌ی جدیدی شده‌اند که به دلیل هندسه‌ی لانه‌زنبوری خود، می‌تواند در ذخیره‌سازی اطلاعات در کامپیوترهای کوانتومی آینده، نقش حیاتی داشته باشد.
در سال‌های گذشته، پیشرفت‌های خوبی برای ساختن اولین کامپیوتر کوانتومی در مقیاس واقعی انجام شده است. با این حال، موانع فراوانی در راه تحقق این هدف وجود دارد که باید برداشته شود؛ مسائلی همچون ایجاد روشی برای ذخیره‌سازی اطلاعات کوانتومی برای مدت زمانی مشخص.

http://s8.picofile.com/file/8310550884/%D8%B1%D8%A7%DB%8C%D8%A7%D9%86%D9%87.jpg


اکنون دانشمندان ماده‌ی جدیدی کشف کرده‌اند که دستیابی به این هدف را میسر می‌کند. چالش اصلی ذخیره‌سازی کوانتومی، حفظ حالت کوانتومی اتم‌ها است و مطالعه‌ی جدید پیشنهاد می‌دهد که ماده‌ای مرکب از مس، ایریدیوم و اکسیژن، الزامات هندسی لازم در ابعاد اتمی را برای انجام چنین وظیفه‌ای دارد. فاضل تفتی، محقق این طرح، می‌گوید:
ماده‌ی ترکیبی مس و ایریدیوم، آرایش اتمی لانه‌زنبوری دارد. در این هندسه‌ی خاص، چرخش الکترون‌ها متوقف نمی‌شود. الکترون‌ها با چرخش خود یک آهنربا تشکیل می‌دهند که گرایش طبیعی مواد است. این پدیده را خنثی‌سازی مغناطیسی می‌گویند.


چرخش الکترون‌ها در آهنرباهایی که عموماً از آن‌ها استفاده می‌کنیم، در یک جهت مشخص ثابت شده است. اما در مایعات اسپینی، حتی با وجود کاهش دما تا صفر مطلق، چرخش الکترون‌ها متوقف نمی‌شود. این ویژگی موجب می‌شود حالت کوانتومی یک ذره با ذره‌ی غیر مجاور آن برابر شود.


در تحقیق اخیر، ماده‌ای ساخته شده‌ است که می‌تواند در کامپیوترهای کوانتومی آینده استفاده شود؛ اما از نتایج حاصل از تحقیق می‌توان برای یافتن روش‌های ایجاد نمونه‌های بیشتر استفاده کرد. با انجام فرآیندی ثابت، این امکان وجود دارد که تمام حالت‌های جدید مایعات کوانتومی اسپینی را کشف کرد؛ حالت‌هایی که ممکن است از یافته‌های این تحقیق عملکرد بهتری داشته باشد. تفتی می‌گوید:
اکتشافات آزمایشگاهی به مدت‌زمان زیادی برای رسیدن به نتیجه‌ی نهایی نیازمند هستند؛ زیرا دانشمندان تمام راه‌های ممکن را که طبیعت برای رسیدن به هدف به آن‌ها می‌دهد، آزمایش می‌کنند؛ اما اکنون که دستورالعمل ساخت یک مایع اسپینی را داریم، می‌توانیم تعداد بیشتری از آن‌ها تولید کنیم. در گام بعد، این دستورالعمل را برای ماده‌ی مرکب مس و ایریدیوم و عناصر دیگر جدول تناوبی برای تولید مایعات اسپینی، اجرا خواهیم کرد.