metallurgydata متالورژی دیتا

متالورژی،نانو،ریخته گری،مدلسازی،جوشکاری،فرج،متالوگرافی،بیومتریال،ایمنی صنعتی،استخراج،عملیات حرارتی،فلزات،مهندسی مواد،خوردگی،دیرگداز

metallurgydata متالورژی دیتا

متالورژی،نانو،ریخته گری،مدلسازی،جوشکاری،فرج،متالوگرافی،بیومتریال،ایمنی صنعتی،استخراج،عملیات حرارتی،فلزات،مهندسی مواد،خوردگی،دیرگداز

metallurgydata       متالورژی دیتا

به لطف خدا،metallurgydata کاملترین و پر بازدیدترین(آمار حقیقی و قابل باز دید)مرجع اطلاعات مواد و متالورژی با بیش از 1300 عنوان ،شامل هزاران متن،کتاب،تصویر،فیلم تخصصی در خدمت شما می باشد.پاسخ به سئوالات و مشاوره رایگان با تجربه20 سال تحقیق و مطالعه در شاخه های مختلف متالورژی.

آماده معرفی طرح ها و واحدهای صنعتی موفق و نو آور بصورت ویدئو و متن در این مجموعه هستیم.

http://kiau.ac.ir/~majidghafouri
09356139741:tel
ghfori@gmail.com
با عرض تقدیر و تشکر از توجه و راهنمایی کلیه علاقمندان
با ctrl+f موضوعات خود را در متالورژی دیتا پیدا کنید

پیامرسان تلگرام: metallurgydata@

بارکد شناسایی آدرس متالورژی
بایگانی

تخمین مقدار حرارت از دست رفته و یا جذب شده

در حالت یک بعدی و حالت پایدار (Steady State) نرخ جریان حرارت از درون عایق را می توان از رابطه فوریه به شرح زیر بدست آورد:

q = - k.A.dT/dx

که:

q نرخ انتقال حرارت است (J/hr – ژول بر ساعت)

A مساحت مقطعی است که حرارت از آن عبور می کند.

k ضریب انتقال حرارت ماده عایق است (J/hr.m.0K – ژول بر ساعت متر درجه کلوین).

و dT/dx گرادیان دما در طول ضخامت عایق بوده و بیانگر اختلاف دما در دو طرف عایق می باشد.

برای سطوح تخت و ضخامت محدود، رابطه فوق را می توان به صورت زیر نوشت:

q = k.A. (T1-T2)/X

که:

X ضخامت عایق است (m).

T1 دمای ناحیه گرم تر (دمای بالاتر) بوده و T2 دمای ناحیه سرد تر (دمای پایین تر) است.

 برای لوله ها و عایق های لوله ای، رابطه فوق به صورت زیر تبدیل می شود:

Q = k.A2. ((T1-T2) / (R2. Ln(R2/R1))

که:

R1 شعاع داخلی عایق لوله ای (m) و R2 شعاع خارجی عایق لوله ای (m) هستند.

A2 مساحت خارجی عایق لوله ای است (m2) – (با احتساب R2 به عنوان شعاع خارجی، A2 = 2πR2L که L طول عایق لوله ای است.)

 به عبارت زیر گاهی ضخامت معادل لایه عایق نیز می گویند.

R2. Ln(R2/R1)

وقتی حرارت از طریق انتقال ، به سطح خارجی عایق رسید، مکانیزم های انتقال حرارت به همرفت و تابش تغییر می کنند. معمولا فرض می شود که این مکانیزم ها، همزمان با هم عمل می کنند و بنابراین برای سطح باید ضریب ترکیبی از هر دو مکانیزم درنظر گرفته شود:

hs = hc + hr

که:

hs ضریب انتقال حرارت ترکیبی است (J/hr.m2.0K)

hc ضریب انتقال حرارت همرفت می باشد (J/hr.m.0K)

hr ضریب انتقال حرارت تابشی از سطح است (J/hr.m.0K)

با فرض اینکه تابش، در همان دمای محیط رخ می دهد، مقدار جریان حرارت از سطح عبارت است از:

q = hs.A. (Tsurf – Tamb)

که:

Tsurf دمای سطح خارجی عایق و Tamb دمای محیط هستند.

ضریب انتقال حرارت تابشی hr را می توان از رابطه زیر تخمین زد:

hr = ε.σ. (Tsurf4 – Tamb4) / (Tsurf – Tamb)

که:

ε ضریب تابش سطح است.

σ ضریب ثابت بولزمان است و مقدار آن برابر 0.1714 * 10-8 (J/hr.m2.0K) می باشد.

مقدار ضریب تابش هر سطح عبارت است از نسبت مقدار تابش آن سطح به مقدار تابش جسم سیاه. ضریب تابش تابعی از جنس ماده، شرایط و پرداخت سطح و دما است. مقدار این ضریب را می توان از کتب انتقال حرارت و استانداردها و مشخصات فنی و فیزیکی مواد مختلف استخارج نمود. جدولی از مقدار ضریب تابشی مواد متدوال را در اینجا می توانید ملاحظه کنید.

همچنین ضریب انتقال حرارت همرفت hs بسته به شرایط مسئله و دمای محیط، با تجربه و آزمایش بدست می آید و رابطه دقیقی ندارد. اطلاعات عمومی در مورد تخمین ضریب hs را می توان در ASTM Practice C 680 و Fundamentals of Heat and Mass Transfer – DeWitt & Incropera یافت.

محاسبه ضخامت عایق

یکی از مسائلی که در عایق ها به وفور دیده می شود، محاسبه ضخامت مناسب عایق است به طوری که دما در سطح عایق به حد دلخواهی برسد. مثلا می خواهیم ضخامت عایق مخزنی را حساب کنیم به طوری که دمای داخل آن 3000C بوده و دمای سطح خارجی عایق به 800C برسد. دمای محیط نیز 200C است.

در انتقال حرارت به صورت حالت پایدار (Steady State)، مقدار حرارت جریان یافته از طریق انتقال از درون عایق برابر است با حرارتی که از سطح عایق به وسیله همرفت و تابش، محیط اطراف داده می شود. بنابراین:

qins = qsurf

و یا به عبارت دیگر:

(k/X).A. (Thot – Tsurf) = h.A. (Tsurf – Tamb)

که X ضخامت عایق است.

با مرتب کردن رابطه فوق برحسب X ، رابطه زیر را خواهیم داشت:

X = (k/h) [(Thot – Tsurf) / (Tsurf – Tamb)]

 

از آنجایی که بدست آوردن مقدار دقیق h دشوار است، در متون مهندسی، معمولا نسبت k/h را، که عبارت است نسبت ضریب انتقال حرارت عایق به ضریب سطحی عایق، تقریبا برابر 0.001 الی 0.01 درنظر میگیرند.

بنابراین با داشتن دماهای مطلوب و محیط و تقریب نسبت k/h می توان ضخامت عایق را محاسبه کرد. برای مثال فوق میتوان نوشت:

Thot = 3000C

Tsurf = 800C

Tamb = 200C

X = (0.0075) [(300-80) / (80-20)] ≈ 0.0275m = 27.5mm

البته نسبت k/h تابع جنس و ضخامت و سطح عایق است و درصورت امکان، بهتر است نسبت دقیق k/h مشخص شود.

نمایشی از انتشار گرما

انتقال گرما یا انتقال حرارت (به انگلیسی: Heat transfer) یک رشته از مهندسی حرارتی است که مربوط به تولید، استفاده، انتقال، تغییرات انرژی گرمایی و حرارت بین سیستم‌های فیزیکی است. انتقال گرما به مکانیسم‌های مختلفی تقسیم بندی می‌شود مانند رسانش گرمایی، انتقال، تشعشع گرمایی و انتقال انرژی با تغییرات فازی.
رسانش گرمایی که نفوذ نیز نامیده می‌شود یک تغییر میکروسکوپیک مستقیم انرژی جنبشی ذرات از طریق مرز بین دو سیستم است. هنگامی که یک شئ در دمایی متفاوت با جسم دیگر یا با محیط اطرافش باشد، گرما جریان می‌یابد و جسم و محیط اطراف دمای مشابه به دست می‌آورند که در این نقطه آن‌ها در تعادل گرمایی هستند. این انتقال گرما خود بخودی همیشه از ناحیه با دمای بالا به ناحیه دیگر با دمای پایین تر اتفاق می‌افتد که با عنوان قانون دوم ترمودینامیک است.
همرفت گرما هنگامی که جریان توده‌ای سیال (مایع یا گاز) گرما را همراه جریان ماده در سیال حمل می‌کند اتفاق می‌افتد. جریان سیال ممکن است با فرایندهای بیرونی به صورت اجباری ایجاد شود یا گاهی اوقات (در میدان‌های گرانشی) توسط نیروهای رانشی هنگامی که انرژی گرمایی سیال را منبسط می‌کند (به عنوان مثال در یک ستون آتش) ایجاد شوند و در نتیجه باعث انتقال خودبخودی می‌شوند. فرایند دوم گاهی اوقات همرفت طبیعی نامیده می‌شود. همه فرایندهای همرفتی گرما را تا حدودی به وسیله نفوذ منتقل می‌کنند. نوع دیگری از همرفت، همرفت اجباری است. در این مورد سیال با استفاده از پمپ، توربین یا وسایل مکانیکی دیگر برای جریان یافتن تحت اجبار قرار می‌گیرد.
شکل نهایی عمده انتقال گرما با تابش است که درهر محیط شفافی (جامد یا سیال) اتفاق می‌افتد اما ممکن است حتی در خلا (مانند هنگامی که خورشید زمین را گرم می‌کند) نیز اتفاق بیفتد. تابش نوعی انتقال انرژی در فضای خالی به وسیله موج‌های الکترومغناطیسی است که به همان روشی که امواج الکترومغناطیسی نوری، نور را منتقل می‌کنند صورت می‌پذیرد و همان قوانینی که انتقال نور را پوشش می‌دهند انتقال گرمای تابشی را نیز پوشش می‌دهند.
گرما در فیزیک، انتقال انرژی گرمایی بین مرز مشخص دو سیستم ترمودینامیکی است. این ویژگی دینامیک است و به صورت ایستا در ماده موجود نیست. در این زمینه گرما به عنوان مترادف انرژی گرمایی به کار گرفته شده‌است. روش بنیادی در انتقال گرما در مهندسی شامل رسانش، همرفت و تابش است. قوانین فیزیکی رفتار و خصوصیات هر کدام از روش‌ها را شرح می‌دهند. سیستم واقعی اغلب ترکیب پیچیدهای از آن‌ها را نشان می‌دهد. روش‌های انتقال گرما در رشته‌های متعدد مورد استفاده قرار می‌گیرند: مانند مهندسی خودرو، مدیریت گرمایی وسایل الکترونیکی و سیستم‌ها، کنترل آب و هوا، عایق و پردازش مواد. روش‌های متنوع مکانیکی برای تحلیل وتخمین نتایج انتقال گرما در سیستم‌ها گسترش پیدا کرده‌اند.
انتقال گرما یک تابع مسیر (یا فرایند مقدار) است که به حالت ماده بستگی ندارد. بنابراین مقدار انتقال گرما در فرایند ترمودینامیکی که حالت سیستم تغییر می‌کند، نه فقط به اختلاف خالص بین ابتدا و انتهای فرایند، بلکه بستگی به این دارد که فرایند چگونه اتفاق می‌افتد. شار گرما نماینده مقدار و بردار جریان گرما در یک سطح است.
انتقال گرما به طور معمول به عنوان بخشی از برنامه درسی مهندسی شیمی و مهندسی مکانیک مورد مطالعه قرار می‌گیرد. به طور معمول، ترمودینامیک پیش نیاز دوره‌های آموزشی انتقال گرما است مانند مواقعی که قوانین ترمودینامیکی اصول مکانیزم انتقال گرما هستند. سایر آموزش‌های وابسته به انتقال گرما شامل تبدیل انرژی و انتقال جرم هستند. معادلات انتقال انرژی گرمایی (قوانین فوریه)، حرکت مکانیکی (قوانین نیوتون برای سیالات) و انتقال جرم (قوانین نفوذ فیک) مشابه هستند و آنالوژی بین این سه فرایند انتقال، برای تسهیل پیش بینی هر یک از آن‌ها به بقیه آن‌ها گسترش پیدا کرده‌است.
شیوه‌های بنیادی انتقال گرما عبارتند از:
    رسانش یا نفوذ: انتقال انرژی بین اجسام که در تماس فیزیکی هستند.
    همرفتی: انتقال انرژی بین یک جسم و محیط اطراف به دلیل حرکت سیال.
    تابش: انتقال انرژی به/از جسم به وسیله تابش یا جذب پرتوهای الکترومغناطیسی.
    انتقال جرم: انتقال انرژی از یک مکان به مکان دیگربه عنوان اثر جانبی انتقال فیزیکی جسم حاوی انرژی.
رسانش
رسانش گرمایی
در مقیاس میکروسکوپیک، رسانش گرمایی در اتم‌ها و مولکول‌های در حال ارتعاش و برخورد و برهم‌کنش آن‌ها با مولکول‌ها و اتم‌های مجاور یا حرکت تند و داغ اتم‌ها صورت می‌گیرد که بخشی از انرژی خود (گرما) را به ذرات همسایه منتقل می‌کنند. به عبارت دیگر، گرما به وسیله رسانش هنگامی که اتم‌های مجاور در برابر دیگری ارتعاش می‌کنند یا الکترون‌ها از یک اتم به دیگری منتقل می‌شوند، انتقال پیدا می‌کند.
هدایت مهم ترین روش انتقال گرما داخل جامد یا بین اجسام جامد که در تماس گرمایی هستند می‌باشد. سیالات -به ویژه گازها- رسانش کمتری دارند. تماس رسانشی گرمایی، مطالعه انتقال گرما بین اجسام جامد در تماس است. رسانش حالت پایا یک شکلی از رسانش است که هنگامی که اختلاف دمایی که موجب رسانش می‌شود ثابت باشد، اتفاق می‌افتد. بنابراین بعد از لحظه تعادل، توزیع مکانی درجه گرما در جسم در حال رسانش خیلی تغییر نمی‌کند.
در رسانش حالت پایا مقدار گرمای وارده به یک مکان برابر مقدار گرمای خارج شده‌است. رسانش ناپایا (گذرا) هنگامی که دمای داخل جسم به عنوان تابعی از زمان تغییر می‌کند اتفاق می‌افتد. آنالیز سیستم‌های ناپایا پیچیده تر است و اغلب به برنامه‌های آنالیز عددی و نظریه‌های تقریبی و استفاده ازکامپیوترنیاز است.
همرفتی
انتقال گرمای همرفتی یا همرفت، درواقع انتقال گرما از یک مکان به مکان دیگر به وسیله حرکت سیالها می‌باشد. همرفت فرایندی است که در آن انتقال گرما اساساً از طریق انتقال جرم اتفاق می‌افتد (در فیزیک، سیال به هر ماده‌ای که تحت تنش‌های برشی تغییر فرم پیدا می‌کند گفته می‌شود. مانند: مایع‌ها، گازها، پلاسماها و برخی از جامدهای پلاستیکی). حرکت توده‌ای سیال، انتقال گرما را در بسیاری از موقعیت‌های فیزیکی (برای مثال سطح بین جامد و مایع) افزایش می‌دهد. همرفت گاهی اوقات شکل غالب انتقال گرما در مایعات و گازهاست. اگر چه گاهی اوقات به عنوان یک روش سوم انتقال گرما مورد بحث قرار می‌گیرد. همچنین گاهی اوقات برای شرح اثرات توام رسانش گرمایی داخل مایع (نفوذ) و انتقال گرما به وسیله جریان توده سیال مورد استفاده قرار می‌گیرد.
فرایند انتقال به وسیله جریان سیال به عنوان advection (حرکت افقی توده‌ای در اثر تغییر دما) مورد استفاده قرار می‌گیرد؛ اما advection خالص ترمی است که عموماً تنها همراه با انتقال جرم در سیالات است؛ مانند advection سنگریزه‌ها در رودخانه.
همرفت طبیعی یا آزاد هنگامی ایجاد می‌شود که حرکت توده‌ای سیال به وسیله نیروهای شناوری که نتیجه تغییرات چگالی بر اثرتغییرات دما در سیال است، اتفاق می‌افتد. همرفت اجباری اصطلاحی است که هنگامی که جریان در سیال به وسیله ابزارهای خارجی مانند پره، استیرر و پمپ ها- که ایجاد همرفت مصنوعی می‌کنند، مورد استفاده قرار می‌گیرد.
همرفت گرمایشی یا سرمایشی در بسیاری مواقع ممکن است به وسیله قانون سرمایش نیوتون شرح داده شود: «میزان از دست دادن گرما در یک جسم متناسب با اختلاف دمایی بین جسم و محیط اطراف است.» با این وجود، درستی قانون سرمایش نیوتون نیازمند این است که میزان از دست دادن گرما از طریق همرفت تابع خطی از اختلاف دمایی که ایجاد انتقال گرما می‌کند باشد و در همرفت سرمایشی، گاهی اوقات اینچنین نیست.
به طور کلی همرفت وابستگی خطی به گرادیان دمایی ندارد و در بعضی مواقع به شدت غیر خطی است. در این موارد، قانون نیوتون به کار نمی‌رود.
تابش
تابش گرمایی انرژی منتشرشده به وسیله ماده با موج الکترومغناطیسی است که شامل همه موادی که دارای دمای بالاتر از صفر مطلق هستند، می‌باشد. تابش گرمایی بدون حضور ماده، از میان فضای خالی منتشر می‌شود و تابش گرمایی نتیجه حرکات تصادفی اتم‌ها و مولکول‌ها در ماده‌است. از آنجا که این اتم‌ها و مولکول‌ها از ذرات باردار تشکیل شده‌اند (پروتون‌ها و الکترون‌ها) حرکات آن‌ها باعث انتشار امواج الکترومغناطیسی، که حامل انرژی هستند می‌باشد. بر خلاف روش‌های رسانش و همرفت، انتقال گرمای اشعه‌های گرمایی می‌تواند در یک نقطه کوچک با استفاده از آینههای منعکس کننده متمرکز شود که درجمع آوری انرژی خورشیدی تولیدی مورد بهره برداری قرار می‌گیرد. برای مثال، نور خورشید منعکس شده ازآینه‌ها، برج انرژی خورشیدی PS10 را گرم می‌کند و در طول روز می‌تواند آب را تا ۲۸۵ درجه سانتی گراد (۵۴۵ فارنهایت) گرم کند.
انتقال جرم
در انتقال جرم، انرژی از جمله انرژی گرمایی با انتقال فیزیکی از جسم گرم به جسم سرد از یک مکان به مکان دیگر حرکت می‌کند. این می‌تواند به سادگی با قرار دادن آب گرم در بطری و گرم کردن بستر آن و یا حرکت کوه یخ در تغییرات جریانهای اقیانوسی باشد؛ ویک مثال عملی هیدرولیک گرمایی است.
تغییر حالت
انتقال گرما با محیط در طول تغییر حالت یعنی ذوب، تبخیر، انجماد، میعان، چگالش، تصعید مانند آب به یخ، آب به بخار، بخار به آب ویخ به آب شامل انرژی قابل توجهی هستند و در بسیاری از موارد مانند موتور بخار، یخچال، و غیره مورد بهره‌برداری قرار می‌گیرند.
برای مثال، معادله میسون (Mason) بیان تحلیلی تقریبی برای رشد قطرات آب بر پایه اثرات انتقال گرما در تبخیر و متراکم شدن است.
تبخیر: انتقال گرما در سیالات در حال جوش پیچیده‌است اما از اهمیت فنی قابل توجهی برخوردار است؛ و با استفاده از منحنی S مانند که وابستگی شار گرما به اختلاف دمای سطح را نشان می‌دهد مشخص می‌شود. در دماهای پایین، جوش اتفاق نمی‌افتد و میزان انتقال گرما با مکانیزم‌های معمول تک حالتی کنترل می‌شود. هنگامی که دمای سطح افزایش می‌یابد، جوش محلی رخ می‌دهد و هستهٔ حباب‌های بخاربه سیال خنک‌تر مجاور رشد می‌کنند و فرو می‌پاشند. در سرعت‌های بالای تولید حباب، حباب‌ها شروع به تداخل می‌کنند.
در دماهای بالا، ماکزیمم مقدار شار انتقال گرما به دست می‌آید (شار دمای بحرانی یا CHF). در دماهای بالا، رژیم هیدرودینامیکی آرام فیلم جوشان به دست می‌آید. شار گرما در طول لایه‌های پایدار بخارکم است اما به آرامی با دما افزایش می‌یابد. ممکن است دیده شود که هر گونه تماس میان مایع و سطح، احتمالاً منجر به ایجاد بسیار سریع هسته‌های لایه‌های تازه بخار می‌شود (هستهٔ خودبخود).
چگالش: چگالش هنگامی که بخار سرد می‌شود و فاز آن به حالت مایع تغییر می‌کند، اتفاق می‌افتد. چگالش مانند جوش، از اهمیت زیادی در صنعت برخوردار است. در حین تراکم، گرمای نهان تبخیر باید آزاد شود و مقدار گرما همان است که در طی تبخیر در همان فشار سیال جذب می‌شود.
چگالش انواع مختلفی دارد:
    تراکم همگن در طول تشکیل مه
    چگالش در تماس مستقیم با مایع subcooled
    چگالش در تماس مستقیم با یک دیوار خنک کننده مبدل گرمایی: این حالت شایع‌ترین مورد استفاده در صنعت است.
    تراکم Filmwise زمانی است که فیلم مایع در سطح subcooled شکل گرفته استو معمولاً هنگامی رخ می‌دهد که مایع سطح را خیس می‌کند.
    تراکم Dropwise زمانی است که قطرات مایع در سطح subcooled شکل گرفته‌اند و گاهی اوقات زمانی که قطرات مایع سطح را خیس نکرده‌اند، اتفاق می‌افتد. تراکم Dropwise برای تداوم با اطمینان مشکل است و بنابراین تجهیزات صنعتی به طور معمول برای عمل کردن در تراکم filmwise طراحی شده‌اند.

روش‌های مدل سازی
پدیده‌های پیچیده انتقال گرما را می‌توان در روش‌های مختلف مدل کرد.
معادله گرما: معادله گرما، معادله دیفرانسیل با مشتقات جزئی است که توزیع گرما (یا تغییرات دما) را در منطقه‌ای داده شده در طول زمان شرح می‌دهد. در بعضی مواقع راه حل دقیق معادله در دسترس است و در موارد دیگر، این معادله بایدبا حل عددی وبا استفاده از روش‌های محاسباتی حل شود. برای مثال در مدل‌های ساده آب و هوایی، ممکن است سرمایش نیوتون به جای کدهای تابشی برای حفظ دمای اتمسفر استفاده شود.
تجزیه و تحلیل توده‌ای سیستم‌ها: تجزیه و تحلیل سیستم‌ها با استفاده از مدل ظرفیت توده‌ای یک تخمین متداول در رسانش گذرا است که ممکن است هنگامی که رسانش گرمایی داخل شی خیلی بیشتر از رسانش گرمایی در مرزهای جسم است، مورد استفاده قرار گیرد. این روش تقریبی است که یکی از جنبه‌های هدایت گذرای سیستم –در داخل جسم-رابه یک سیستم معادل حالت پایدار کاهش می‌دهد. در این روش فرض بر این است که دما در داخل جسم کاملاً یکسان است؛ اگر چه مقدارآن ممکن است با زمان در حال تغییر باشد. در این روش، نسبت مقاومت در برابر گرمای رسانشی در درون جسم به مقاومت در برابر انتقال گرمای همرفت در مرزهای جسم که به عنوان عدد بایو شناخته می‌شود، محاسبه می‌شود.
برای عددهای بایو کوچک تخمین دمای یکنواخت مکانی در داخل جسم می‌تواند به کار رود و فرض شده‌است که انتقال گرما در جسم زمان برای توزیع یکنواخت درون خود با توجه به مقاومت کمتر به انجام این کار در مقایسه با مقاومت برای گرمای ورودی به جسم دارد. تجزیه و تحلیل توده‌ای سیستم‌ها اغلب پیچیدگی معادلات را به معادله دیفرانسیل خطی مرتبه اول کاهش می‌دهد که در آن گرمایش و سرمایش با حل تابع نمایی ساده شرح داده می‌شوند و اغلب به عنوان قانون سرمایش نیوتون اشاره دارد.


مجید غفوری