metallurgydata متالورژی دیتا

متالورژی،نانو،ریخته گری،مدلسازی،جوشکاری،فرج،متالوگرافی،بیومتریال،ایمنی صنعتی،استخراج،عملیات حرارتی،فلزات،مهندسی مواد،خوردگی،دیرگداز

metallurgydata متالورژی دیتا

متالورژی،نانو،ریخته گری،مدلسازی،جوشکاری،فرج،متالوگرافی،بیومتریال،ایمنی صنعتی،استخراج،عملیات حرارتی،فلزات،مهندسی مواد،خوردگی،دیرگداز

metallurgydata       متالورژی دیتا

به لطف خدا،metallurgydata کاملترین و پر بازدیدترین(آمار حقیقی و قابل باز دید)مرجع اطلاعات مواد و متالورژی با بیش از 1300 عنوان ،شامل هزاران متن،کتاب،تصویر،فیلم تخصصی در خدمت شما می باشد.پاسخ به سئوالات و مشاوره رایگان با تجربه20 سال تحقیق و مطالعه در شاخه های مختلف متالورژی.

آماده معرفی طرح ها و واحدهای صنعتی موفق و نو آور بصورت ویدئو و متن در این مجموعه هستیم.

http://kiau.ac.ir/~majidghafouri
09356139741:tel
ghfori@gmail.com
با عرض تقدیر و تشکر از توجه و راهنمایی کلیه علاقمندان
با ctrl+f موضوعات خود را در متالورژی دیتا پیدا کنید

پیامرسان تلگرام: metallurgydata@

بارکد شناسایی آدرس متالورژی
بایگانی

۲۰ مطلب در اسفند ۱۳۹۳ ثبت شده است

Tie Lines and the Lever Rule    
     http://s5.picofile.com/file/8171690768/%D9%82%D8%A7%D9%86%D9%88%D9%86_%D8%A7%D9%87%D8%B1%D9%85_2_.gif     

Consider a cooling alloy at the composition and temperature marked on the diagram. As shown on the phase diagram, the alloy is, at the given temperature, a mixture of alpha and liquid phases - but what are their exact compositions at this temperature?


         http://s5.picofile.com/file/8171690776/%D9%82%D8%A7%D9%86%D9%88%D9%86_%D8%A7%D9%87%D8%B1%D9%85_3_.gif

An isothermal (constant temperature) line through the alloy's position on the phase diagram when it is in a two phase field, intersecting the two adjacent solubility curves, is called a tie line (yes, that's the horizontal yellow line on the diagram).
The ends of the tie lines show the compositions of the two phases that exist in equilibrium with each other at this temperature. From the diagram we know that alpha and liquid phases will exist. The tie line shows that the alpha phase is 5.2%B and the liquid phase is 34.5%B at this temperature.
Remember, though, that the overall composition of the sample is unchanged - we are only discovering the compositions of the constituent phases within the sample.
  
      http://s4.picofile.com/file/8171690800/%D9%82%D8%A7%D9%86%D9%88%D9%86_%D8%A7%D9%87%D8%B1%D9%85_4_.gif  

For a cooling alloy at composition Co and temperature Tx , tie lines may be used to answer questions such as:
•what phases are present ?
•what are their compositions ?
•if the temperature is reduced to Ty, how do the compositions of the two phases vary ?
The answer to "what phases are present ?" is easy. Composition Co and temperature Tx meet in the beta + liquid phase field, so these are the two phases present.


  http://s5.picofile.com/file/8171690826/%D9%82%D8%A7%D9%86%D9%88%D9%86_%D8%A7%D9%87%D8%B1%D9%85_5_.gif


To answer "what are their compositions ?" we must draw a horizontal tie line from the point to the nearest phase diagram boundaries. The tie line shows us that the compositions are:
•Liquid: X wt% B
•Beta: Y wt% B
Tie Lines and the Lever Rule    
        http://s5.picofile.com/file/8171690850/%D9%82%D8%A7%D9%86%D9%88%D9%86_%D8%A7%D9%87%D8%B1%D9%85_6_.gif

To answer the last question "if the temperature is reduced to Ty, how do the compositions of the two phases vary?" consider the new tie-line, shown in yellow on the diagram.
The compositions of liquid and beta phase have both decreased in wt%B to:
•Liquid: X' wt% B
•Beta: Y' wt% B
Thus, both the liquid and the beta phases are getting richer in A as the sample is cooled.
http://s4.picofile.com/file/8171692484/%D9%82%D8%A7%D9%86%D9%88%D9%86_%D8%A7%D9%87%D8%B1%D9%85.gif 
 
Now that we know the compositions of the two phases, we need to find how much of each phase exists at the given temperature. The ratio of the two phases present can be found by using the lever rule.
At first sight the lever rule can appear confusing. It is really invoking the conservation of mass, and can be proved mathematically, as shown below the diagram.

http://s5.picofile.com/file/8171690950/%D9%82%D8%A7%D9%86%D9%88%D9%86_%D8%A7%D9%87%D8%B1%D9%85_10_.gif
Essentially, we start off with an overall composition of our alloy - Co. From the tie-line we know that the two phases at a given temperature have two different compositions, but overall the amounts of these two compositions must add up to the alloy's overall composition, Co.
This is the basis for the lever rule. Using the lever rule itself is very simple, we'll show you with a diagram.....
 

http://s5.picofile.com/file/8171690876/%D9%82%D8%A7%D9%86%D9%88%D9%86_%D8%A7%D9%87%D8%B1%D9%85_7_.gif 
Basically, the proportions of the phases present are given by the relative lengths of the tie line. So, the proportions of alpha and liquid present on the diagram (showing a portion of the whole phase diagram) are:
 and  
Simple, isn't it ?
But... which equation corresponds to which phase ?
http://s5.picofile.com/file/8171690892/%D9%82%D8%A7%D9%86%D9%88%D9%86_%D8%A7%D9%87%D8%B1%D9%85_8_.gif
Now, consider the same alloy as it crosses the liquidus line. It seems reasonable to assume that, at this point, the alloy will be nearly all liquid. Looking at the diagram it can be seen that Y1 is very small here and so must be the proportion of alpha present. Similarly X1 is relatively large and so it corresponds to the amount of liquid.
So, the left side of the tie line gives the proportion of the liquid phase (the phase to the right), and the right side of the tie line gives the proportion of the alpha phase (the phase on the left).
Remember: you use the length of the line which is furthest from the phase in which you are interested.

 http://s4.picofile.com/file/8171690934/%D9%82%D8%A7%D9%86%D9%88%D9%86_%D8%A7%D9%87%D8%B1%D9%85_9_.gif 
Distances along the tie line can be found very simply by using a ruler on an accurate phase diagram or, more correctly, by using data from the composition axis (the x-axis).
For example, on the diagram shown, the percentage of alpha present can be calculated from the three pieces of composition data given:
Fraction of alpha = (34.5 - 23.7) / (34.5 - 5.2) = 0.3686
Thus, percentage of alpha = 0.3686 x 100 = 36.86%
and, as the alpha and the liquid make up 100% of the alloy's composition:
Percentage of liquid = 100 - 36.86 = 63.14%

مجید غفوری